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In the analysis of a scalar time series, which lies on an m-dimensional object, a great number of techniques
will start by embedding such a time series in a d-dimensional space, with d�m. Therefore there is a coordinate
transformation �s from the original phase space to the embedded one. The embedding space depends on the
observable s�t�. In theory, the main results reached are valid regardless of s�t�. In a number of practical
situations, however, the choice of the observable does influence our ability to extract dynamical information
from the embedded attractor. This may arise in problems in nonlinear dynamics such as model building, control
and synchronization. To some degree, ease of success will depend on the choice of the observable simply
because it is related to the observability of the dynamics. In this paper the observability matrix for nonlinear
systems, which uses Lie derivatives, is revisited. It is shown that such a matrix can be interpreted as the
Jacobian matrix of �s—the map between the original phase space and the differential embedding induced by
the observable—thus establishing a link between observability and embedding theory.
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I. INTRODUCTION

When an experimental mth-order dynamical system is in-
vestigated, the m physical quantities �state variables� should
be all measured, at least in principle, to have a complete
description of the state of the system under study. Unfortu-
nately, in most experimental situations, only a single physical
quantity is measured. The first step in the analysis is there-
fore to reconstruct a phase space from this scalar time series
by using some type of coordinate system. Commonly used
coordinates use time delays or time derivatives �1�. If the
dimension of the embedding space is sufficiently large, the
reconstructed trajectory is expected to have the same prop-
erties as the trajectory embedded in the original phase space
�2�.

A great number of techniques developed for studying non-
linear dynamical systems start with such an embedding and
the main results reached are valid, in general, regardless of
the observable chosen �2�. In a number of practical situa-
tions, however, the choice of the observable does influence
our ability to extract dynamical information from the embed-
ded attractor. This dependence results from the complexity of
the coupling between the dynamical variables, and the sym-
metry properties the original system may have �3�. The cou-
pling complexity can be estimated with observability indices
�4,5� and, consequently, the variables can be ranked. The
dependence on the choice of the observable has direct bear-
ing on problems in nonlinear dynamics such as model build-
ing �6,7�, synchronization �8� and control �9,10�. In all these
cases, ease of success and overall performance will depend
to some degree on the choice of observable which is related
to the observability of the dynamics. Despite the potential
practical importance of this issue, observability is not a prob-
lem commonly addressed in the community of nonlinear dy-
namics. It is conjectured that one of the reasons for this is
probably that, although concepts such as embedding are

quite familiar to most researchers in nonlinear dynamics, this
is not necessarily true concerning observability theory.

In previous works the issue of observability of nonlinear
dynamical systems �3,5� was addressed simply by locally
applying the theory of linear systems �4� and taking time
averages along an orbit in state space. In �3� it was shown
that ergodicity applies, that is, the results remain qualita-
tively unchanged if averaging is taken over an ensemble of
orbits rather than over time. This paper extends the previous
results by using a different definition for the observability
matrix, defined using Lie derivatives �11�, which is better
suited to analyze nonlinear systems. Such an extension has
two main consequences. First, in many cases it emphasizes
the effects of nonlinearity on the computed observability in-
dices. Second, and most important, it provides a link with
embedding theory, which seems to be a useful interpretation
that has not been reported so far in the literature.

This paper is organized as follows. Section II A gives
some basic definitions of observability and Sec. II B pro-
vides a link between observability and embedding theory. In
Sec. III an example is discussed and the observability matrix
is interpreted as the Jacobian matrix of the coordinate trans-
formation between the original phase space and the differen-
tial embedding induced by the given variable. Section III A
brings to light the link between the observability indices and
the ability to build a good global model from a single time
series. Section IV is devoted to five different examples. Fi-
nally, Sec. V provides the main conclusions of the paper.

II. OBSERVABILITY FOR NONLINEAR SYSTEMS

A. Concepts

Briefly, a system is observable if the full state can be
found based on the system output �27�, which could be one
of the state variables or a function of the state vector s
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=h�x�. This concept is of great importance in a number of
applications. If a certain system is poorly observable from a
given variable, the use of such a variable hampers building a
useful model or analyzing the system from data �12,13�.
Similarly, the use of Kalman filtering schemes to estimate
unobserved states requires the choice of a variable to drive
the filter �14�. The performance of the filter will usually de-
pend on how observable is the system from the chosen vari-
able.

For linear systems, observability conditions are generally
easy to compute �4�. Although the concepts of controllability
and observability for linear systems were developed in the
early 1960s, it was not until the 1970s that the nonlinear
counterparts started to be developed for which Lie algebra
became an important tool �15–17�. Now consider a nonlinear
system

ẋ = f�x� ,

s�t� = h�x� , �1�

with f :Rm→Rm. Differentiating s�t� yields

ṡ�t� =
d

dt
h�x� =

�h

�x
ẋ =

�h

�x
f�x� = L fh�x� . �2�

L fh�x� is the Lie derivative of h along the vector field f. The
jth order Lie derivative is given by

L f
jh�x� =

�L f
j−1h�x�
�x

· f�x� , �3�

where L f
0h�x�=h�x�. The time derivatives of s can be written

in terms of Lie derivatives as s�j�=L f
jh�x�. The observability

matrix can be written as

Os�x� = �
�L f

0h�x�
�x

]

�L f
m−1h�x�
�x

� , �4�

where the index s has been used to emphasize that Os�x�
refers to the system observed from s�t�.

System �1� is said to be observable if every pair of differ-
ent initial conditions x01

and x02
is distinguishable with re-

spect to the measured time series s�t� , t�0. That is, if the
system is observable, it is possible to trace back every single
initial condition given only the measured time series s�t� , t
�0, or still, h�x01

��t�0�h�x02
��t�0 iff x01

�x02
.

In order to check the observability of a nonlinear system,
it is thus convenient to investigate the map
�s :Rm�x��Rd(s�t� ,s�1� ,… ,s�d−1�). If �s is invertible �injec-
tive�, for a given embedding dimension d, it is possible to
reconstruct the state from s�t�. Although it is often impos-
sible to check the global invertibility for general nonlinear
maps, the Rank theorem provides a sufficient condition for
local invertibility. The map �s is locally invertible at x0 if the
Jacobian has full rank, that is, if

rank�	 ��s

�x
	

x=x0


 = m . �5�

Hence, the system is locally observable if condition �5�
holds.

B. Link between observability and embedding

The main point of this paper is to point out that the matrix
in �5� used to test for the local invertibility of the embedding
is, in fact, the observability matrix that corresponds to s�t�
=h�x�. In other words the Jacobian of the map between the
original phase space Rm�x� and the reconstructed phase space
�also called the differential embedding� Rd�X� where X
= �s�t� ,s�1� ,… ,s�d−1��, is the observability matrix Os defined
for nonlinear systems �18�. The observability of a dynamical
system from an observable s�t� is therefore directly related to
the existence of singularities in �s.

It is important to realize that this connection is not arrived
at if the former definition of the observability matrix is used,
that is, the definition put forward in �3,5�. Therefore it seems
that the definition �4� has two benefits. First, it is more ad-
equate for nonlinear systems than to locally apply the linear
definition and subsequently average along a trajectory. Sec-
ond, it provides a clear link, which seems to be lacking in the
literature, between observability and embedding theories for
the case of continuous-time systems.

The standard definitions of observability and controllabil-
ity are “yes” or “no” measures, that is, the system is either
observable or not �4�. In practice, however, a system may
gradually become unobservable as a parameter is varied or,
for nonlinear systems, there are regions in phase space that
are less observable than others. Following our previous
work, we quantify the degree of observability with the ob-
servability index, defined as �3,4�

�s�x� =
��min�Os

TOs,x�t���
��max�Os

TOs,x�t���
, �6�

where �max�Os
TOs ,x�t�� indicates the maximum eigenvalue of

matrix Os
TOs estimated at point x�t� �likewise for �min�. Then

0���x��1, and the lower bound is reached when the sys-
tem is unobservable at point x. It should be noticed that
index �6� is a type of condition number of the matrix Os

TOs,
which has been called distortion matrix in �19�.

It will be convenient to summarize the observability at-
tained from a given variable using a value averaged along an
orbit. In this respect, the following definition is considered:

�s =
1

T
�
t=0

T

�s„x�t�… , �7�

where T is the final time considered and, without loss of
generality the initial time was set to be t=0. In what follows
observability indices � will be calculated for several systems
with diverse dynamical properties. The reader should bear in
mind, however, that the observability indices are local quan-
tities and that taking the average is useful inasmuch as it
portrays an overall picture. Another important remark is that
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the observability indices do not have absolute interpretation
but rather only a relative value. Thus values of �s �for differ-
ent choices of s�t�� should be compared within the context of
a single system.

In our previous work on observability, these indices were
computed using the powers of the system Jacobian matrix
�3�. Here the matrix Os�x� is evaluated from �4� along a
trajectory x on an attractor and, using �6� and �7�, the observ-
ability indices will be computed.

III. A SIMPLE EXAMPLE WITH A NONLINEAR SYSTEM

In this section it is desired to apply the main ideas de-
scribed in Sec. II and illustrate how to affect the modeling of
nonlinear dynamics from a single measurand. To this end, let
us start with the Rössler system �20� :

ẋ = − y − z ,

ẏ = x + ay ,

ż = b + z�x − c� , �8�

where �a ,b ,c� are the bifurcation parameters. In what fol-
lows, each dynamical variable of �8� will successively be
considered as the observable. In each case a coordinate trans-
formation map �s will be used in the analysis.

When the system is observed by means of a measurement
function such as s�t�=h�x ,y ,z�=y�t�, the corresponding ob-
servability matrix is, see �4�,

Oy = �0 1 0

1 a 0

a a2 − 1 − 1
� . �9�

Note that Oy is a constant matrix which does not depend on
the dynamical variables. Moreover, this matrix is nonsingular
and consequently the Rössler system is therefore observable
from the y variable at any point of the phase space.

Now let us analyze the system from a differential embed-
ding point of view. The respective coordinate transformation
�y :R3�x ,y ,z��Ry

3�X ,Y ,Z� is

�y = �X = y ,

Y = ẏ = x + ay ,

Z = ÿ = ax + �a2 − 1�y − z ,

� �10�

and it is very easy to check that Oy in �9� is the Jacobian
matrix of �y in �10�, that is, J��y�=Oy. Map �y defines a
global diffeomorphism since it is injective and its Jacobian
matrix has a determinant which never vanishes. Conse-
quently, when there is a diffeomorphism between the original
phase space and the differential embedding induced by an
observable, the system can be observed from such a variable
at any point in space. From an observability point of view,
this is the best situation ever.

When the Rössler system is observed from the x variable,
the observability matrix is

Ox�x� = � 1 0 0

0 − 1 − 1

− 1 − z − a c − x
� . �11�

We can easily check that Ox�i�=J��x�. The determinant
det(Ox�x�) vanishes at x=a+c �28�. �x thus defines only a
local diffeomorphism. The Rössler system is therefore not
observable from the x variable over all the phase space.

In a similar way, when Cz= �0 0 1�, the corresponding ob-
servability matrix becomes

Oz�x� = � 0 0 1

z 0 x − c

b + 2z�x − c� − z �x − c�2 − y − 2z
� . �12�

This matrix is not constant and det�Oz�=−z2, which obvi-
ously vanishes for z=0. The Rössler system is therefore not
everywhere observable from the z-variable. In addition, the
plane z=0 is an order-two singular set. Consequently, the
observability matrix Oz�x� is approximately rank deficient
even close to the singular plane z=0. As expected, we have
J��z�=Oz�x�.

For the three dynamical variables of the Rössler system
�8�, the observability indices averaged over a trajectory are

�x = 0.022 �0.022� ,

�y = 0.133 �0.133� ,

�z = 0.0063 �0.011� , �13�

where the values within parentheses were obtained using the
definition used in our previous works �3,5�. From the previ-
ous values, the variables can be ranked in descending degree
of observability according to y�x�z. This order is thus in
agreement with the presence of singularities in the embed-
ding coordinate transformations �s. Such singularities lay at
the root of the lack of observability. It is interesting to notice
that with the definition of observability used in this paper, the
practical difficulty of using variable z as an observable has
been further emphasized, whereas no change has been veri-
fied in the observability indices associated to the two other
variables.

A. Observability and global modeling

When a differential embedding is used, it is possible to
rewrite the original equations in terms of the derivatives of
the observable in the canonical form:

Ẋ1 = X2,

Ẋ2 = X3,

]

Ẋd = Fs�X1,X2,…,Xd� ,

�14�

where Xi=s�i−1� in the case of a d-dimensional system. The
model function Fs can be obtained using the Lie derivatives
L f

dh�x� and the inverse of map �. Obviously, the differential
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model �14� is not defined for the singular sets of map � :
these singularities occur in the model function Fs as poles of
some rational function. The existence of such singularities
may prevent the analytically derivation of the model function
Fs �6�.

When working with differential embeddings, it is thus
possible to get a set of differential equations from the mea-
surement of the time evolution of a single observable by
estimating the model function Fs as an expansion on a poly-
nomial basis. The estimated model function

F̃s = �
i=1

NK

Ki�
i, �15�

where �i are polynomial terms of the form X1
k1X2

k2…Xd
kd. Co-

efficients Ki are numerically estimated using a least-squares-
like technique detailed in �6� whereas the choice of the poly-
nomial terms is still a challenge �21�. Since the estimated

function F̃s has a polynomial form, it becomes obvious that
the efficiency of the approximation directly depends on the
number and multiplicity of the poles, just as the observability
indices are effected by such singular sets. Other less general
representations may be used in the approximation �22� at a
higher computational cost. Even if more general representa-
tions are used, still the observability will pose real problems
in the vicinities of the singular sets. Therefore, the accuracy
of the approximation will be strongly influenced by how the
neighborhood of a singular set is visited by the trajectory
rather than the existence of the pole itself or even the basis
functions used to compose the model. This establishes a link
between the observability indices and our ability in getting a
successful global model from a given observable.

IV. MORE ADVANCED EXAMPLES

In this section, two different systems are investigated. For
the sake of comparison, the values computed using the linear
observability will be shown in parentheses. The focus of this
section is to point out the advantages of using the observabil-
ity indices as defined in Sec. II A �23,24�.

A. The hyperchaotic Rössler system

In 1979, Rössler proposed a four-dimensional system with
an hyperchaotic attractor �25�. The equations are

ẋ = − y − z ,

ẏ = x + ay + w ,

ż = b + xz ,

ẇ = − cz + dw , �16�

with parameter values �a ,b ,c ,d�= �0.25,3 ,0.5,0.05�. Initial
conditions are �x0 ,y0 ,z0 ,w0�= �−10,−6,0 ,10.1�. Differential
embeddings of the hyperchaotic attractors from the four dif-
ferent variables are shown in Fig. 1. The observability indi-
ces are

�x = 2.2 	 10−4�5.6 	 10−4� ,

�y = 9.0 	 10−4�9.4 	 10−4� ,

�z = 1.3 	 10−7�5.3 	 10−4� ,

�w = 2.1 	 10−4�1.3 	 10−3� �17�

and lead to the order y�x�w�z.
This is the first reported example where the observability

indices computed using �6� and �7� with �4� rather than ap-
proximating matrix A by the system Jacobian matrix. When
the latter matrix is used as a local approximation, the observ-
ability order is w�y�x�z. Such a ranking is difficult to
harmonize with the differential embeddings shown in Fig. 1.
The differential embedding induced by the z variable is
clearly similar to the differential embedding of the z variable
of the 3D Rössler system which is already known to be a
very poor observable for the dynamics. This fact is correctly
quantified by the observability indices using either proce-
dure. On the other hand, the differential embedding induced
by the w variable provides a representation of the dynamics
where part of the attractor has been squeezed to such an
extent that it is quite difficult to distinguish two different
revolutions on the attractor. This poor observability from the
w variable is better quantified by the procedure used in this
paper when compared to the results obtained with the former
definition.

In terms of the map between the original phase space
R4�x ,y ,z ,w� and the differential embedding
R4�X1 ,X2 ,X3 ,X4� induced by s�t�=h�x ,y ,z ,w�, the singu-
larities involved in the model function are in good agreement
with these indices computed using the new definition. These
singularities correspond to the set where det��s� vanishes
and therefore no local inverse is defined. This, as discussed
at the end of Sec. II A and in Sec. III A, characterizes regions
in phase space over which the system is practically unob-
servable.

The singularities of the model functions obtained by suc-
cessively embedding the hyperchaotic Rössler system from
each state variable are reported in Table I. From this table,
the two extreme situations are clearly recognized: the model
function Fy has no singularities when the embedding is at-
tempted using y�t� as the observable and an order-3 singular-
ity appears in Fz when the embedding is attempted using z�t�
as the observable. On the other hand, it is quite difficult to
distinguish the type of singularities involved in the model
functions Fx and Fw, a fact that is confirmed by the relative
similarity of the observability indices �x and �w. It is note-
worthy that such a similarity is not observed if the former
definition for computing the observability indices is used.

B. The Hénon-Heiles system

The Hénon-Heiles system �26�, a two-degrees-of-freedom
conservative system, is governed by the set of four ordinary
differential equations
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ẋ = u ,

ẏ = v ,

u̇ = − x − 2xy ,

v̇ = − y + y2 − x2. �18�

In this work the energy E of the system is equal to
0.128546999 for the initial conditions �x0 ,y0 ,u0 ,v0�
= �0.0,0.67,0.093,0.0�. The observability indices for this
case are

�x = 0.041�0.087� ,

�y = 0.026�0.059� ,

�u = 0.022�0.006� ,

�v = 0.015�0.007� . �19�

The first remark is that using �6� and �7� with �4�, the vari-
ables can be ranked as their corresponding momenta, that is,
x�y and u�v. This comes as no surprise since ẋ=u and ẏ
=v. Note that this was not the case when the jth power of the
Jacobian matrix was used instead of the Aj matrices.

From the differential embeddings of this system, it ap-
pears that the differential embedding induced by the x vari-
able is the simplest one in terms of the folding mechanism
�Fig. 2�a��. The y-induced embedding reveals a region �the
extreme left of the portrait� where different revolutions in the
phase space are not distinguishable �Fig. 2�b��. Such a fea-
ture is always the root of a decrease in observability. The two
embeddings induced by the momenta are more complicated,
that is, they have a more folded structure �Figs. 2�c� and
2�d��, a feature associated with an overall decrease of observ-
ability.

When maps �s between the original phase space
R4�x ,y ,u ,w� and the differential embeddings R4�s , ṡ , s̈ ,s��
are considered, again there is a strong connection between
the observability indices and the singularities of the inverse
of such maps. When inverted, the map

FIG. 1. Plane projections of the four differential embeddings
induced by the variable of the hyperchaotic Rössler system. Param-
eter values: �a ,b ,c ,d�= �0.25,3 ,0.5,0.05�.

TABLE I. Singularities involved in the model function of the
canonical forms of the hyperchaotic Rössler system induced by the
different variables.

Variable Denominator of function Fs

y constant

x X2− �a+d�X+ �ad−c�+Y

w c�dX−Y�2

z X3
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�x
−1 = �

x = X ,

y = −
X + Z

2X
,

u = Y ,

v = −
YZ + XW

2X2

� �20�

associated with the x-induced embedding has an order-2 sin-
gularity in X2=0. The model function has this singularity
�X2=0�. This, on its own right, is already a great difficulty
when it comes to global model building. Added to this diffi-
culty is the fact that a model for this system should also be
conservative, a constraint which is difficult to impose in
practice.

When the y variable is the observable, the situation be-
comes slightly more intricate since the map

�y
−1 = �

x = ± 
X�X − 1� − Z ,

y = X ,

u = 

Y�2X − 1� − W

2
X�X − 1� − Z
,

v = Y

� �21�

has a more complicated singularity. The model function to
estimate has a singularity equal to �X2−X−Z�, that is, an
order-2 singularity. The intersection set between the singular
set and the differential embedding is clearly larger for the y
induced differential embedding than for the x-induced differ-
ential embedding �Fig. 3�. This means that the system spends
more time in the vicinity of an unobservable region when
observed from the y variable than when it is observed from
the x variable.

When the two momenta, u and v, are considered, the
structure of the phase portrait becomes more folded �Figs.
2�c� and 2�d��. This results from the derivation. The structure
of maps �u

−1 and �v
−1 involve higher order singularities. Con-

sequently, the observability indices from the momenta are
slightly less than for their corresponding variables. The mo-
menta are ranked as their corresponding variables. In this
conservative system, the relationships between the observ-
ability indices and the complexity of the couplings between
the dynamical variables has, therefore, been verified.

V. CONCLUSION

This paper has discussed issues relating to the observabil-
ity of nonlinear dynamical systems. The results presented
extend previous definitions of observability indices using Lie
derivatives. With this definition it was possible to establish
an apparently missing link between observability and an em-
bedding theory. Indeed, it has been shown that the observ-
ability matrix is, in fact, the Jacobian matrix of the coordi-
nate transformation between the original phase space and the
differential embedding induced by the particular observable.
A consequence of this is that the loss of observability can be

FIG. 2. Differential embeddings induced by the variables of the
Hénon-Heiles system.
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associated to the occurrences of singularities in the inverse
embedding maps.

Two new examples have been discussed and it has been
argued that the definition of the observability matrix used in
this paper, in many cases, provides better indications con-
cerning observability. A practical consequence of this is that
observability has a direct bearing on the ability to obtain a

global model from a given observable and to choose the
driving signal in Kalman-based state estimation problems.
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